
Algant Master’s Thesis

The Riemann Hypothesis for Hypersurfaces over
Finite Fields

Author:
Martin Allen

Supervisors:
Prof. Tamás Szamuely

Prof. David Harari



1

Chapter 1

Introduction

The goal of this thesis is to give an exposition explaining Nicholas Katz’s 2014 paper “A
Note on the Riemann Hypothesis for Hypersurfaces”, where he gives a new proof of Deligne’s
classical result in the special case of hypersurfaces. The main result then is that the geometric
zeta function of a smooth projective hypersurface X/Fq of dimension d given by

Z(X,T ) = exp(
∞∑

n=1

|X(Fnq )|T
n

n
)

admits a factorization
2d∏
i=0

P
(−1)i

i , where Pi is a q-Weil polynomial of weight i. While this

result has been known in greater generality since the 70’s, it’s worth pointing out that the
2010 paper ”Hypersurfaces and the Riemann Hypothesis” by A. Scholl reduced the general
case of smooth proper varieties to that of hypersurfaces. The method of proof in that paper is
a deformation argument, and does not use Lefschetz pencils or the `-adic Fourier transform.
Thus, together with Scholl’s paper this completes a new proof of the classical result.

As for the layout of the thesis, Chapter 2 of the thesis contains an in depth introduction
to the tools needed to understand Katz’s paper, some `-adic formalism, and an introduction
to the Riemann hypothesis. It’s fairly technical, so if the reader feels comfortable with the
results they can check them as needed. Chapters 3 and 4 contain the main arguments pre-
sented in Katz’s paper and are presented in more or less the same order as in the paper itself.
Finally, there is an appendix presenting some ideas which were important, but tangential to
the main discussion. I should point out that Katz’s paper is itself only 10 pages, and can
easily be found on his website if the reader prefers to read it in tandem with this thesis.

The sketch of the main argument is roughly as follows. First we make some observations
about the convergence of L-functions of so called ι-real local systems on affine curves, which
has direct applications to deducing purity for such local systems. The general result is
theorem 3.2.5 which says that weight 0 purity of an ι-real local system on an affine curve
can be detected from a single closed point. After studying some general properties of the
étale cohomology groups of smooth hypersurfaces, we show that the Riemann hypothesis for
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an n dimensional smooth hypersurface X0,0/Fq of degree d is equivalent to proving purity
for the middle cohomology group Hn(X0,Q`) where X0 is the base change of X0,0 to Fq.
Smooth and proper base change allows us to study this cohomology group in 1-parameter
family {Xt,0}, which we then exploit in theorem 3.3.3 the following way. If X1,0/Fq is another
smooth hypersurface of dimension n and degree d for which it is known that Hn(X1,Q`) is
pure of weight n, connect X0,0 and X1,0 in a fibration over the affine line over Fq. This
fibration will be smooth over some open set U0 containing the points t = 0, 1. Then by the
assumption on X1,0, if ū1 is a geometric point above the point t = 1 then the eigenvalues
of Frobt=1|Rnf∗Q`(n/2)ū1 are all of absolute value 1. Together with our results on purity
of local systems on curves this implies that Rnf∗Q` is pure of weight n on U0, which proves
the Riemann hypothesis for each fibre over U0 and in particular for X0. It then remains
to find a smooth model of a hypersurface of dimension n and degree d over Fp satisfying
the Riemann hypothesis for every triple (n, d, p). We simplify the problem in corollary 3.2.5
by proving the classical result that in the case of hypersurfaces, the Riemann hypothesis
is actually equivalent to a certain point counting formula. After treating a few individual
cases, we then show that a certain hypersurface called Gabber’s hypersurface satisfies the
point counting formula for the rest of the cases. This is done in chapter 4 using Gauss sums
and some elementary results from the theory of diagonalizable group schemes.

I would like to thank my professors from Milan and Paris for everything they did for me
in the last two years. I would also like to thank my adviser Tamás Szamuely for suggesting
the topic and helping me throughout the writing and editing process, as well as my adviser
in Paris, David Harari.
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Chapter 2

Introduction to the Riemann
Hypothesis

2.1 Zeta Functions

Let X be a scheme of finite type over Fq where q = pr and let |X| denote the set of closed
points of X. The zeta function of X is defined to be the complex valued function

ζ(X, s) =
∏

x∈|X|

1

1− N(x)−s

where N(x) is the norm of x, which is by definition the size of the residue field k(x). We
define the degree of x be deg(x) = [k(x) : Fq]. By the Nullstellensatz the degree and hence
the norm of a closed point are finite. It’s not difficult to show that ζ(X, s) converges uniformly
on compact sets on the domain <(s) > dim(X), where it defines a holomorphic function.
Thus we can speak about the zeta function as an analytic object, about its singularities and
zeros etc.

Note that deg(x)|n if and only if there exists a morphism i : Spec(Fqn)→ X over Spec(Fq)
with image x, i.e. an Fq-homomorphism k(x) → Fqn . In this case we say that x is defined
over Fqn , and that i is an Fqn-point of X. This distinction between ”points” in the sense of
closed points of X as a topological space and Fqn-points for some n plays an important role.
For example, take a closed point x ∈ |X| with degree d, which then gives us a morphism
Spec(Fqd) → X. Precomposition with any nontrivial automorphism of Spec(Fqd) over Fq
gives us a different Fqd-point with image x. As Fqd/Fq is separable, there are exactly deg(x)
such points with image x. In general we denote the set of all Fqn-points of X by X(Fqn).
We then have the following easy proposition:

Proposition 2.1.1. 1. For any closed point x, the norm of x is finite and a power of q.

2. There are only finitely many points of a given norm, hence also of a given degree.
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3. |X(Fqn)| = ∑
deg(x)|n

deg(x)

Proof. 1. Obvious.

2. We may cover X by finitely many open subsets of the form Spec(Fq[x1, . . . , xn]/I)
where I is generated by finitely many polynomials in the xi. For a closed point x in
such an open set, N(x)|qd if and only if x corresponds to an n-tuple in Fn

qd
satisfying

the equations in I. Certainly the number of such points is at most (qd)n, hence the
claim.

3. |X(Fqn)| = | ∐
x∈|X|

HomFq(k(x),Fqn)| = | ∐
deg(x)|n

HomFq(k(x),Fqn)|

=
∑

deg(x)|n
|HomFq(k(x),Fqn)| = ∑

deg(x)|n
deg(x).

We define the geometric zeta function of X to be

Z(X,T ) = exp(
∞∑

n=1

|X(Fqn)|T
n

n
)

Proposition 2.1.2. Z(X, q−s) = ζ(X, s) whenever this equation makes sense.

Proof. Ignoring any questions of convergence we have that

log(ζ(X, s)) =
∑
x∈|X|

−log(1−N(x)−s) =
∑
x∈|X|

∞∑
n=1

N(x)−sn

n
=
∞∑
n=1

∑
x∈|X|

N(x)−sn

n

=
∞∑
n=1

∑
x∈|X|

q−sn·deg(x)

n
=

∞∑
m=1

(
∑

deg(x)|m
deg(x)) q

−sm

m

where the last equality follows from the substitution m = n · deg(x). By the previous propo-
sition, |X(Fqn)Fq | =

∑
deg(x)|n deg(x), so making the substitution and taking exponentials

gives the desired result.

Definition 2.1.3. A q-Weil number of weight n∈ N is an algebraic number for which
all archemedian absolute values are qn/2. A q-Weil polynomial pure of weight n is a
polynomial P with integer coefficients and constant term 1 whose factorization
P =

∏
(1− γjT ) has the property that all the γj are q-Weil numbers of weight n.

Assume further that X is smooth, proper, geometrically connected and of pure dimension
d. Then the Riemann hypothesis for X is the following

Theorem 2.1.4 (Riemann hypothesis). Z(X,T ) =
2d∏
0

Pi(T )(−1)i+1
where the polynomial

Pi is a q-Weil polynomial of weight i
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The goal of the next sections is to place the theory of zeta functions in a more general
context where we will give a new interpretation of the Riemann hypothesis in terms of étale
cohomology. Ultimately we will be concerned only in the case of X a hypersurface, and we
will see how the study of the zeta function reduces to counting points defined over various
extensions of Fq. This technique is perhaps already foreshadowed by our discussion of the
geometric zeta function, but we will see how further reductions allow us to solve the Riemann
hypothesis by explicit point counting in a few concrete cases.

2.2 The Frobenius morphism

There is one advantage that we inherit for free by working in characteristic p, namely the
Frobenius morphism. It turns out there are several flavors of the Frobenius, but we begin
by exploring some of the basic and important properties of the absolute Frobenius. It will
play a decisive role in all that follows. Here we will follow [SGA 5 Exp. V 15].

Let X be a scheme over Fq. The (absolute) Frobenius endomorphism frX : X → X is
defined to be the identity on the topological space, with OX → OX given by f 7→ f q. If
g : Y → X is a morphism, it is a simple exercise to check that

Y Y

X X

frY

g g

frX

is a commutative diagram, and in fact fixing g and frX in the diagram above, frY is the
unique endomorphism of Y making the diagram commute. Thus frX depends functorially
on X, or in categorical language that fr· is an endomorphism of the identity transformation
on Sch/Fp.

It then follows that we have the cartesian diagram

Y

X ×X Y Y

X X

frY

g

FrY/X

πY/X

g(p) g

frX

Denote the product X ×X Y in this diagram by Y (p/X). It’s clear the assignment pY :
Y  Y (p/X) is functorial in Y since this is functor is just base change by frX : X → X. We
define the morphism FrY/X : Y → Y (p/X) to be the relative Frobenius of Y relative to X.
We have the following proposition concerning the relative Frobenius:
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Proposition 2.2.1. 1. Fr·/X commutes with base change, i.e. if f : X ′ → X and ′

denotes the base change functor relative to X ′, then with the notation above we have
(Y (p/X))′ ' (Y ′)(p/X′) and (FrY/X)′ = FrY ′/X′.

2. FrY/X is functorial in Y in the sense that if g′ : Y ′ → X is a morphism and h : Y ′ → Y
is an X-morphism, then we have the following commutative diagram:

Y ′ Y
′(p/X)

Y Y (p/X)

FrY ′/X

h hp

FrY/X

where the right vertical arrow is induced by base change.

3. The relative Frobenius FrY/X : Y → Y (p/X) is a universal homeomorphism, i.e. is a
homeomorphism and remains so after base change.

Proof. The proofs of the first two statements are formal. For the third statement, notice
that by the base change properties in part one it suffices to show that FrY/X : Y → Y p/X

is a homeomorphism. For this we use the following commutative diagram together with the
fact that frY is the identity on topological spaces:

Y Y (p/X)

Y (p/X) Y

X X

frY

g

FrY/X

g(p)

πY/X

g(p)

fr
Y (p/X)

FrY/X

g

frX

Corollary 2.2.2. frX is a universal homeomorphism.

Proof. With the above notation we want that πY/X is a homeomorphism. This follows from
the fact that FrY/X and frY are both homeomorphisms.

Corollary 2.2.3. If g : Y → X is étale, then FrY/X is an isomorphism. Hence together
with proposition 2.2.1, Fr·/X is natural isomorphism of the identity functor idSch/X and the
base change functor p : Sch/X→ Sch/X given by the Frobenius.

Proof. More generally it holds that a universal homeomorphism g : S → T which is étale
is an isomorphism. For a proof of this fact see [Stacks tag 025F]. Ultimately we only care
about the case when X is a variety over Fq, so we treat this case. We already know that



CHAPTER 2. INTRODUCTION TO THE RIEMANN HYPOTHESIS 7

FrY/X is a homeomorphism, so it remains to check that Fr#
Y/X : OX → (FrY/X)∗OY is an

isomorphism. One checks immediately that that in the case of varieties FrY/X is a finite
étale morphism, so (FrY/X)∗OY is a coherent OX-module, and that each induced morphism
of residue fields is a separable extension. However they are also purely inseparable, since
FrY/X is a universal homeomorphism hence radicielle. This implies that the maps of residue
fields are all isomorphisms, so Nakayama’s lemma implies the isomorphism.

Now let F be a sheaf on Xét, and consider the pushforward frS∗F of F by frX . By
definition, for U → X étale we have frX∗F(U) = F(U ×X X), which using the above
notation we rewrite as F (U (p/S)). Then F(Fr−1

U/S) : F(U) → frX∗F(U) is an isomorphism
functorial in U by corollary 2.2.3, so we have constructed an isomorphism F → frX∗F . By
adjunction this gives us an isomorphism1 Fr∗F/X : fr∗XF → F .

Definition 2.2.4. For a scheme X defined over Fq, and a sheaf F ∈ Sh(Xét), we define
the Frobenius correspondence on (X,F) to be the data (frX ,FrF/X) where frX is the
absolute Frobenius of X and FrF/X : fr∗XF → F is the isomorphism described above.

We note that the Frobenius correspondence is functorial in F , meaning that Fr·/X :
fr∗X → idSh(Xét) is a natural isomorphism of functors. There is also a way to assign meaning
to the phrase ”the Frobenius correspondence is functorial in X” in the language of fibred
categories, namely if C is the fibred category of étale sheaves over the category of schemes over
Fq, then the collection of FrF/X form an isomorphism of functors of fibred categories fr∗ →
idC. We don’t really need this, but it’s interesting to note that the Frobenius correspondence
is the unique such isomorphism. For details see [SGA 5 Exp. XV 2.1.1].

2.3 The Étale Fundamental Group

Here we give a brief summary of basic results in the theory of étale fundamental groups,
going as far as the homotopy sequence and the correspondence between étale covers and finite
continuous π1-sets. For a more thorough treatment, see the standard references: [Szamuely
ch. 5] or [SGA 1].

Let X be a connected scheme. Then we consider the category C whose objects are schemes
Y over X whose structure morphism to X is finite étale. We also call such a Y/X a finite
étale covering. Fixing a geometric point x̄ : Spec(Ω)→ X with Ω a separably closed field,
we can define the fibre functor Fibx̄ : C → FSet which takes Y → X to the underlying
finite set of Y ×X Spec(Ω) = Y (x̄). We define the étale fundamental group π1(X, x̄) to
be the automorphism group of this functor, i.e. the group of all natural transformations
η : Fibx̄ → Fibx̄ admitting a two sided inverse. We have the following results regarding the
structure of π1(X, x̄):

1It’s not obvious that the morphism given by the adjunction is also an isomorphism. However, we showed
above that frX is a universal homeomorphism, and it follows that the corresponding morphisms frX∗ and
fr∗X are mutually quasi-inverse. Thus isomorphisms map to isomorphisms.
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Proposition 2.3.1. 1. The fibre functor Fibx̄ is pro-representable by the inverse system
of connected Galois covers2 (Pα, φα,β), i.e. there is an isomorphism natural in Y :

lim−→HomX(Pα, Y ) ' Fibx̄(Y ).

2. Keeping the same notation, every automorphism of the fibre functor Fibx̄ comes from
a unique automorphism of the inverse system (Pα, φα,β).

3. There is an isomorphism π1(X, x̄) ' lim←−Aut(Pα)opp

Theorem 2.3.2. 1. π1(X, x̄) is profinite, and its action on Fibx̄(Y ) is continuous for all
Y ∈Ob(C).

2. If z̄ → X is another geometric point, there is a natural isomorphism of functors
γ : Fibx̄ ' Fibz̄ inducing a continuous isomorphism fγ : π1(X, x̄) ' π1(X, z̄). Fur-
thermore, if fγ′ is another such isomorphism of fibre functors, then fγ = fγ′ up to
composition with an inner automorphism of π1(X, x̄) or π1(X, z̄).

3. The fibre functor Fibx̄ induces an equivalence of categories between C and the category
of finite sets with a continuous π1(X, x̄) action. Moreover, under the connected Galois
covers correspond to the finite π1(X, x̄)-sets with a transitive action.

Example 2.3.3. If k is a field with separable closure ks, then π1(Spec(k), Spec(ks)) =
Gal(ks/k).

Let X ′
f−→ X be a morphism of connected schemes. Since the the property of being finite

étale is closed under base change, we have the base change functor Bf : C → C ′ where C ′
is the category of finite étale coverings of X ′. Let x̄′ be a geometric point of X ′ mapping
to x̄ under f . Since we have an isomorphism fibre functors Fibx̄ ' Fib′x̄′ ◦ Bf , we have an
induced morphism f∗ : π1(X ′, x̄′)→ π1(X, x̄). By the above theorem, if we change the base
points x̄, x̄′, then our morphism f∗ will change by an inner automorphism of the source or
the target.

Finally, we want to give a description of the so called ”homotopy sequence”. In this case
we restrict ourselves to the case where X0 is a geometrically integral scheme of finite type
over a field k. Let ks/k be a separable closure of k, and let X = X0 ×Spec(k) Spec(k

s) be the
base change of X0 to ks. Let x̄ : Spec(ks) → X be a geometric point over a closed point of
X (they are dense), and let z̄ a geometric point of X0 lying under x̄. Then by example 2.3.3
and what was just said, there are induced continuous morphism π1(X, x̄) → π1(X0, z̄) and
π1(X0, x̄)→ Gal(ks/k). We have the following proposition:

2Remember that a finite étale cover Y → X is said to be Galois if the automorphism group Aut(Y |X)
acts transitively on the geometric fibres Y (x̄).
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Proposition 2.3.4. In the situation above we have the following short exact sequence of
profinite groups:

1→ π1(X, z̄)→ π1(X0, x̄)→ Gal(ks/k)→ 1

Proof. See [Szamuely 5.6.1]. Note that the composition X → X0 → Spec(k) is the same
as X → Spec(ks)→ Spec(k). By example 2.3.3 Spec(ks) has trivial fundamental group, so
indeed the above composition is trivial.

2.4 Lisse Q`-sheaves

In classical topology we often consider cohomology groups with constant coefficients in a
group such as Z, but in étale cohomology this would produce some very unwanted results.
For example, we will see later that for G an abelian group there is a natural identification
H1(X,GX) ' Homcont(π1(X), G) when G is given the discrete topology. Assume π1(X) is
non-trivial. If G were Z for example, which has no non-trivial compact (i.e. finite) subgroups,
then Homcont(π1(X), G) = 0 since π1(X) is profinite hence has compact image. We want to
avoid such peculiarities. However, in order for the cohomology theory to have other desirable
properties we cannot always restrict ourselves to coefficients in some finite abelian group.
The solution lies in `-adic sheaves.

Fix X/Fp a connected scheme, and let F ∈ Sh(Xét) be a sheaf of sets. We say that
F is constant if F = AX for A a set, where AX = HomX(·, ∐

a∈A
Xa). We say that F is

locally constant if there exists some étale covering (Ui → X) such that F|Ui is constant.
We say that a locally constant sheaf is finite if its stalks take values in a finite set A, or
equivalently if it is locally isomorphic to a constant sheaf determined by a finite set A. Since
X is assumed to be connected, it follows easily that for such sheaves we have that locally
F|Ui ' AUi for all i and some fixed A. There is an obvious notion of such sheaves with values
in abelian groups and Λ-modules for Λ a ring.

We want to give a classification of finite locally constant (flc) étale sheaves which will
make it more apparent how to define the monodromy action of π1(X). We give a few
propositions then state the result.

Proposition 2.4.1. Representable functors HomX(·, Y ) are sheaves on Xét.

Proof. In fact such presheaves are sheaves in the fpqc topology. In this case we say the étale
site is sub-canonical for such sheaves. See [Vistoli] for a proof.

Proposition 2.4.2. If Y → X is a finite étale cover of degree n, then there exists a finite
étale cover Y ′ → Y such that Y ′ ×X Y → Y ′ is the trivial cover of Y ′, which is to say

Y ×X Y ′ '
n∐
i=1

Y ′ over Y ′.

Proof. See [Szamuely 5.2.9]
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Corollary 2.4.3. For Y → X finite étale, Y , the sheaf represented by Y , is flc.

Proposition 2.4.4. A sheaf F on X which is locally representable is representable. More
specifically, let F be a sheaf on Xét, and let (Ui → X) be an étale cover of X such that
F|Ui is representable isomorphic to HomUi(·, Yi). Then there exists a Y → X étale (with
Y ×X Ui ' Yi for all i) such that F ' HomX(·, Y ).

Proof. See [SGA 3 Exp. VIII 1.7.2,3]

Corollary 2.4.5. If F is étale locally representable on X in the sense of the above proposition
such that the Yi are finite étale over Ui, then the scheme Y representing F is finite étale
over X.

Proof. This follows immediately from fpqc descent by base changing Y → X with
∐
Ui →

X.

Proposition 2.4.6. All flc sheaves on X are of the above form, i.e. are representable by
some finite étale covering Y → X.

Proof. Let F be an flc sheaf on X. Then there exits an étale cover (Ui → X) such that
F|Ui ' HomUi(·,

∐
a∈A(Ui)a) for A a finite set. Thus F|Ui is representable by

∐
a∈A

(Ui)a, which

is clearly finite étale over Ui. Hence by 2.5.4 and 2.5.5 F is represented by some Y → X
which is finite étale.

Theorem 2.4.7. The category of flc sheaves on Xét is equivalent to the category of finite
étale covers of X under the Yoneda embedding. Hence the functor F 7→ Fx̄ is an equivalence
of categories between the category of flc sheaves and the category of finite π1(X, x̄)-sets.

Proof. The above propositions show that the Yoneda embedding is essentially surjective,
hence the first claim is immediate. The second claim follows from the correspondence in
theorem 2.3.2.

Remark 2.4.8. We remark that the category of flc sheaves of Λ modules where Λ is some
finite ring is equivalent to the category of finite Λ[π1(X, x̄)]-modules. Indeed we may consider
Λ as a constant sheaf of rings on X which is representable by

∐
λ∈Λ

Xλ, and for which π1(X, x̄)

acts trivially on the stalks. The commutative diagrams expressing the fact F is an flc
sheaf of Λ-modules will correspond to diagrams of π1(X, x̄)-sets via the fibre functor, and
these will demonstrate the axioms that Fx̄ is a finite Λ[π1(X, x̄)]-module. For example, the
multiplication map m : Λ × F → F corresponds to a map of π1(X, x̄)-sets, and the fact
that π1(X, x̄) acts trivially on Λ means precisely that for any g ∈ π1(X, x̄) the commutative
diagram:
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Λ×Fx̄ Fx̄

Λ×Fx̄ Fx̄

m

g×g g

m

implies that the action of π1(X, x̄) commutes with that of Λ. The other axioms are
justified in the same manner.

Corollary 2.4.9. Given a morphism f : X ′ → X and a geometric point x̄′ : Spec(Ω)→ X ′

above x̄ : Spec(Ω) → X, let f∗ : π1(X ′, x̄′) → π1(X, x̄) be the induced morphism between
étale fundamental groups, and let M be a finite π1(X, x̄) set corresponding to the fcl sheaf Y ,
i.e. M = Y (x̄). Then the pullback of M via f∗ is a finite π1(X ′, x̄′) set, which corresponds
to the fcl sheaf f ∗Y on X ′. In other words, the two notions of pullback coincide.

Recall the simple proof that f ∗Y ' X ′ ×X Y . We have the following chain of natural
isomorphisms for any sheaf G on X ′ét:

HomSh(X′ét)
(f ∗Y ,G) ' HomSh(Xét)(Y , f

∗G) [adjunction]

' f ∗G(Y ) [Yoneda lemma]

= G(X ′ ×X Y ) [definition]

' HomSh(Xét)(X
′ ×X Y ,G) [Yoneda lemma]

Hence by the Yoneda lemma it follows that f ∗Y ' X ′ ×X Y . Also we derive in this way
that flc sheaves are preserved under pullback.

Proof of corollary. This is just a consequence of how f∗ is defined, but is used heavily in the
next sections so we make it explicit. We have the following diagram:

X ′ ×X Y (x̄′) X ′ ×X Y Y

Ω X ′ Xx̄′

Where the two inner squares are cartesian, hence the outer square is cartesian. This means

we have a isomorphism X ′×XY (x̄′)
φY−→ Y (x̄) which is functorial in Y . For γ ∈ π1(X ′, x̄′), we

have that f∗(γ) is by definition the arrow which makes the following diagram commutative:

X ′ ×X Y (x̄′) Y (x̄)

X ′ ×X Y (x̄′) Y (x̄)

γ

φY

f∗(γ)

φY
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This means precisely that the pullback of M via f∗ is isomorphic as a π1(X ′, x̄′)-set to the
module corresponding to f ∗Y .

While pulling back preserves flc sheaves, the question of push forward is much more
delicate and will be delt with in the next section.

Now let Λ be a finite ring, let Y = HomX(·, Y ) be a finite locally constant sheaf of
Λ-modules represented by a finite étale cover Y → X, and let x̄→ X be a geometric point
of X. By remark 2.4.8 we have a continuous homomorphism π1(X, x̄)→ AutΛ(Y (x̄)). This
basic observation leads to the following definition.

Fix ` a prime3, let E/Q` be a finite algebraic extension, R the integral closure of Z` in
E, and λ a uniformizing parameter in R. Then R/λnR is finite for all n and R/λR is a finite
extension of F`.

Definition 2.4.10. Let (Fn, fn)n∈N be an inverse system of sheaves on X such that

1. Fn is an flc sheaf of R/λnR-modules.

2. For each transition map fn+1 : Fn+1 → Fn there is an induced isomorphism Fn+1/λ
nFn+1 →

Fn such that the following diagram commutes:

Fn+1 Fn

Fn+1/λ
nFn+1

fn+1

proj
'

We say that such a system is a lisse λ-adic sheaf, and sometimes denote it simply by F . In
the case of E = Q` we also say that this system is a lisse Z`-sheaf. A morphism between
lisse λ-adic sheaves F → G is just a collection of morphisms Fn → Gn compatible with
the transition maps.

Remark 2.4.11. This allows us to also speak about cohomology with coefficients in a lisse
λ-adic sheaf. Indeed for F = (Fn) a lisse λ-adic sheaf, one defines H i(X,F) = lim←−H

i(X,Fn).

In the case of finite H i(X,Fn), these groups will be finitely generated R-modules [Milne EC
V 1.11]. Tensoring by E gives us what will be defined as cohomology groups with coefficients
in a lisse E sheaf, and they will be finitely dimensional E-vector spaces. For example, the
standard notation for (lim←−H

i(X,Z/`nZ))⊗Q` is just H i(X,Q`), which is perhaps dangerous.
The fact that these cohomology functors form a δ-functor will be used without comment,
but of course in practice the proofs focus on the H i(X,Fn) and conclude upon passing to
the limit.

Example 2.4.12. 1. Let M be a finitely generated R-module, so that Mn := M/λnM is
a finite R/λnR-module. Then the system of flc sheaves (MnX

) is a lisse λ-adic sheaf.

3It will always be the case that whenever we consider q = pn that ` 6= p
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2. µ` = (µ`n), where µ`n = HomX(·, X ×Z Z[X]/X`n − 1) is the group of `n-th roots of
unity, is a lisse Z`-sheaf with transition morphisms fn+1(α) = α`. The action of Z/`nZ
on µ`n is simply given by r · α = αr.

3. If F = (Fn) and G = Gn are lisse λ-adic sheaves, then F ⊗ G = (Fn ⊗R/λnR Gn) is also
a lisse λ-adic sheaf.

4. Denote by F̂ the inverse system of sheaves given by HomZ/`nZ(Fn,Z/`nZ
X

). This is
an `-adic sheaf, called the dual of F .

Before stating the main theorem of this section we make some observations. Let F
be a lisse λ-adic sheaf on X. Then taking stalks, the conditions placed on the transition
morphisms guarantee that the inverse limit Fx̄ = lim←−Fn,x̄ is an R-module. It basically
follows from Nakayama’s lemma when the Fn are flc, i.e. with finite stalks, that this inverse
limit is a finitely generated R-module. This observation, together with the above leads us
to the following theorem:

Theorem 2.4.13. Let X be connected scheme with a geometric point x̄→ X and let F be a
λ-adic sheaf. Then the functor F 7→ Fx̄ is an equivalence of categories between the category
of lisse λ-adic sheaves and the category of finitely generated R-modules with a continuous
π1(X, x̄)-action.

Proof. Following [Fu 10.1], we prove essential surjectivity. We showed earlier that Fn,x̄
is a is finite R/λnR-module with a π1(X, x̄)-action, i.e. there is a continuous map π1 →
AutR/λnR(Fn,x̄). By definition, these morphisms are compatible with the continuous transi-
tion functions AutR/λn+1R(Fn+1,x̄)→ AutR/λnR(Fn,x̄) given by reduction modulo λnR. Thus
we have a continuous map π1(X, x̄)→ lim←−AutR/λnR(Fn,x̄) ' AutR(Fx̄), i.e. a representation.

For the quasi-inverse, suppose we are given a continuous representation π1(X, x̄) →
AutR(M), which means a compatible family of continuous maps π1(X, x̄)→ AutR/λnR(M/λnM).
The M/λnM are finite, so by proposition 2.4.7, these representations arise from the stalks
of flc sheaves Fn, and the maps Fn+1 → Fn inherited from this correspondence produce a
projective system which is a λ-adic sheaf.

Definition 2.4.14. The category of lisse E-sheaves is the quotient category of the category
of lisse λ-sheaves by the full subcategory of torsion objects.

In down to earth terms, this means that we take the category whose objects are those
lisse λ-adic sheaves for which multiplication by arbitrary powers of λ is injective by setting all
morphisms involving torsion objects to be zero. In particular, all torsion objects themselves
become equated with the zero object. If F is a lisse λ-sheaf, it gives rise to a lisse E-sheaf
which we denote by F ⊗ E. For a geometric point x̄, we define (F ⊗ E)x̄ := Fx̄ ⊗R E. We
have the following theorem:

Theorem 2.4.15. The functor F⊗E 7→ (F⊗E)x̄ gives an equivalence of categories between
lisse E-sheaves and continuous finite dimensional E-representations of π1(X, x̄).
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sketch. To construct a quasi-inverse, let V/E a finite dimensional representation of π1(X, x̄),
and let T0 ⊂ V an R-submodule which spans V/E over E, i.e. a lattice. Then g(T0) is also
a lattice, and the stabilizer of T0, H = {g ∈ π1(X, x̄)|g(T0) = T0} is an open set of π1(X, x̄).
Hence T =

∑
g∈π1(X)

g(T0) is a finite sum, hence a finite dimensional R[π1(X, x̄)]-module. Thus

it arises as the stalk Fx̄ of some lisse λ-adic sheaf F such that Fx̄ generates V over E. It
follows F ⊗ E is a smooth E-sheaf mapping to V .

We define a lisse Q`-sheaf to be a finite dimensional Q`-representation of π1(X, x̄)
which is definable over some finite extension E/Q`, i.e. is conjugate inside GLn(Q`) to some
subgroup of GLn(E), and thus corresponds to a lisse E-sheaf for some E.4 We note that such
objects are closed under tensor product, as for any fields E,E ′ of definition we may simply
extend scalars to a field containing both. Mostly we use this as a way to avoid keeping track
of which field we use to define a given representation of π1(X, x̄).

2.5 Frobenius and Cohomology

This fairly technical section is included largely for completeness, but the curious reader should
consult [SGA 5 Exp. VIII] or [Fu 10.3] for the details. The proofs are almost all formal and
uninstructive, hence will not be included. However, the dictionary discussed here between a
representation theoretic and algebro-geometric understanding of the situation plays a vital
role in the later sections.

Let X0 be a scheme over Fq, and let F0 a lisse Q` sheaf on X0. In 2.2 we introduced the
Frobenius correspondence (frX0 , F r

∗
F0/X0

). By general theory we get morphisms of Q`-vector
spaces:

H i(X0,F0)→ H i(X0, fr
∗
X0
F0)

Hi(X0,F r∗F0/X0
)

−−−−−−−−−→ H i(X0,F0)

Where the first morphism is the canonical one induced by pullback. We have the follow-
ing:

Proposition 2.5.1. The composite of the above morphism,

φF : H i(X0,F0)→ H i(X0,F0)

is the identity.

Proof. See [SGA 5 Exp. XV 3] or [Milne EC VI 13.5]

Thus the Frobenius action on cohomology as it stands is not very useful, so we split this
action in the following way. Consider the fibred square:

4This is somewhat redundant as the image of π(X, x̄) is compact, and one can show that the compact
subgroups of GLn(Q`) are always conjugate to groups definable over finite extensions of Q`.
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X Fq

X0 Fq

p

and let F = p∗F0 be the pullback of F to X. It’s easy to see that

frX = frX0×FqFq
= frX0×frFq = (idX0×frFq)◦(frX0× idFq) = (frX0× idFq)◦(idX0×frFq).

We call the morphism frX0 × idFq the geometric Frobenius, and we denoted it by F . It a
homeomorphism, since it’s just the base change of frX0 which is a universal homeomorphism.
Similarly we define the the morphism F ∗F0

: F ∗F → F to be the one induced from Fr∗F0/X0

by base change, i.e. the composition

F ∗F = F ∗p∗F0 ' p∗fr∗X0
F0

p∗(Fr∗F0/X0
)

−−−−−−−→ p∗F0 = F .

We call the pair (F, F ∗F0
) the geometric Frobenius correspondence.

Remark 2.5.2. As in section 2, one can show that the geometric Frobenius is functorial in
F0 and in X0, and we leave it to the reader to formulate the precise statements. However, we
make note of a special case. Let X1 be the base change of X0 to Fqn for some n, and F1 the
pullback of F0. Let frnX1

be the n-th iteration of frX1 , which is an endomorphism of X1 over

Fqn . Then as above we can base change X1 to Fqn and consider the Frobenius correspondence
(F1, F

∗
F1

) which gives F ∗F1
: F ∗1F → F . Then (X,F ∗F1

) is just the n-th iteration of (X,F ∗F0
).

We have the following geometric situation. By the Nullstellensatz we have that

|X| ' HomFq(Fq, X) ' HomFq(Fq, X0),

hence F is an automorphism of HomFq(F, X0). Fix a t : Fq → X0 a geometric point

of X0 with image x, which corresponds to t′ ∈ HomFq(Fq, X) via t′ = (t, idFq). Since
F (t′) = (frX0 × id) ◦ (t, id) = (frX0 ◦ t, id) = (t ◦ frFq , id), it follows that t′ is a fixed point
of F if and only if t ◦ frFq = t, which happens if and only if x is an Fq-point of X0. Similarly
we have that t′ is a fixed point of F n if and only if x is a Fqn-point of X0. Thus we have
another canonical identification

|X0| ' |X|/F
where |X|/F denotes the set of F orbits in |X|, and the number of elements in the orbit

corresponding to x ∈ |X0| is precisely deg(x).
As above, let x a closed point in X0 with deg(x) = n and let x̄ ∈ X(Fq) lie above x.

Then by what was just said, x̄ is a fixed point of F n. It follows that the n-th iteration of
the geometric Frobenius correspondence (F, F ∗F0

) gives an isomorphism F ∗nx̄ : Fx̄ → Fx̄. Let
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i : Spec(k(x)) → X0 be the inclusion. Then i∗F0 is the lisse Q`-sheaf corresponds to the
Gal(Fq/k(x))-module Fx̄. Let fx : Fx̄ → Fx̄ be the action of the Frobenius substitution
of Gal(Fq/k(x)), which is the field automorphism over k(x) given by exponentiation by qn.
Then we have the following proposition:

Proposition 2.5.3. With the above notation F ∗nx̄ : Fx̄ → Fx̄ is the inverse of fx : Fx̄ → Fx̄.

Proof. See [Fu 10.3.6].

Remark 2.5.4. Consider the Frobenius substitution f ∈ Gal(Fq/Fq). By transport of
structure, this supplies us with another morphism X → X which above we denoted by
idX0 × frFq , and is the inverse of the geometric Frobenius F . In exactly the same way, we
could have defined a Frobenius correspondence using this morphism, which in the literature
goes by the name of the arithmetic Frobenius correspondence. It follows that this
correspondence is inverse to the geometric Frobenius, and in the situation above of a point
x of degree n, the n-th iteration of the arithmetic Frobenius acts on Fx̄ in exactly the same
way as the Frobenius substitution in Gal(Fq/k(x)). Of course this is what one would expect,
and though this approach is more natural it turns out to be the geometric Frobenius which
plays the bigger part.

We may use the geometric Frobenius correspondence to define automorphisms of the
H i(X,F) is exactly the same way as proposition 2.5.1, this time with non-trivial results. In
all cases which interest us, X0 is either smooth, or smooth and proper over Fq, hence so is
X/Fq. If F0 is an flc sheaf of Λ-modules with torsion prime to p, the H i(X,F) will be finite
sets together with an action of the Frobenius [Milne EC VI 5.5].

2.6 Smooth and Proper Base Change

In 2.4.9 we discussed the pullback of an flc sheaf and noted that pretty much everything
functioned as expected. The situation of pushforwards is much more subtle. First consider
the more classical case of differentiable manifolds. By the Ehresmann fibration theorem,
if f : M → N is a surjective (smooth) submersion which is proper, then f is a locally
trivial fibration. This means that for and y in N , there exists a neighborhood Uy and a
diffeomorphism g : f−1(Uy) → Uy ×My where My = f−1(y), such that proj1 ◦ g = f . In
this case, if F is a locally constant sheaf on M and y is a point of N with trivialization
Uy diffeomorphic to a ball, then Rif∗F is constant on Uy. The idea is as follows: if By is
a ball contained in Uy, then the restriction Rif∗F(Uy) → Rif∗F(By) is an isomorphism,
since f−1(By) = By ×My is a deformation retract of f−1(Uy) = Uy ×My. Since (Rif∗F)y '
H i(My,F), it follows that the Rif∗F are locally constant with stalks given by the H i(My,F).

The étale situation is more delicate. For example, from the Ehresmann fibration theorem
it follows relatively easily that there is only one class of smooth hypersurfaces of degree d in
PnC up to diffeomorphism. There can be no analogue in the case of complex manifolds, which



CHAPTER 2. INTRODUCTION TO THE RIEMANN HYPOTHESIS 17

can be seen already in the case of tori. However, we have the following result which can be
considered an algebraic analogue in the étale setting:

Theorem 2.6.1 (Smooth Proper Base Change). Let Y → X be a smooth proper morphism
of schemes of characteristic p, F a locally constant sheaf on Y with torsion prime to p. Then
for any i ≥ 0, RiF is a locally constant sheaf on X with stalks H i(Yx̄,F|Yx̄). Hence if X is
connected, the groups H i(Yx̄,F|Yx̄) are all isomorphic.

Proof. See [Milne EC VI 4.2]

Corollary 2.6.2. The pushforward of a lisse Q`-sheaf under a smooth proper morphism is
a lisse Q`-sheaf.

Example 2.6.3. Let f : X → Spec(Fq[t]) be a smooth proper morphism, and consider the
sheaf Q` on X . Let x̄ : Spec(Fq) → Spec(Fq[t]) be a geometric point with image a closed
point ℘, and consider the following tower of cartesian diagrams:

X℘ Spec(Fq)

X℘,0 Spec(k(℘))

X Spec(Fq[T ])

Then the horizontal arrows are all smooth and proper. Then it follows from smooth and
proper base change that H i(X℘,Q`) ' (RiF)x̄. It follows that this is an isomorphism of
π1(Spec(k[T ], x̄)-modules, hence also of Gal(Fq/k(℘))-modules.

2.7 L-functions and the Riemann hypothesis

As above, let F0 a lisse Q` sheaf on X0. In section 2.5 we defined the geometric Frobenius
correspondence (F, F ∗F0

) and stated the fundamental relation that for a closed point
i : Spec(k(x))→ X0 lying below a geometric point x̄, that F ∗nx̄ acts as f−1

x on Fx̄, where fx
is the Frobenius substitution in Gal(Fq/k(x)). If we change the base point to t̄, how does
the action of F ∗nx̄ change?

By proposition 2.3.2 we have an isomorphism φ : Fibx̄ → Fibt̄ of fibre functors which gives
an isomorphism γ : π1(Spec(k(x)), x̄) → π1(Spec(k(x)), t̄) unique up to composition with
an inner automorphism. However, π1(x, x̄) ' Ẑ is abelian (2.3.3), hence the isomorphism is
actually unique. Thus it must be the isomorphism making the triangle
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Gal(Fq/Fq)

π1(Spec(k(x)), x̄) π1(Spec(k(x)), t̄)
γ

commute. In other words, the identification π1(x, x̄) with Gal(Fq/Fq) is canonical, and
it makes sense to talk about the Frobenius element of π1(x, x̄), denoted by fx as above.
Moreover, by construction the following square commutes:

Fx̄ Ft̄

Fx̄ Ft̄

φF

fx fx

φF

As fx generates a dense subgroup, it follows that the representations Fx̄ and Ft̄ of
Gal(Fq/k(x)) are equivalent. It also follows that the isomorphism Fx̄ ' Ft̄ respects the
action of the geometric Frobenius correspondence F ∗nx̄ since it is just the inverse of fx. Since
we took F to be a smooth Q` sheaf, it then makes sense to talk about the trace or the
characteristic polynomial of F ∗nx̄ |Fx̄ which is independent of the chosen x̄ over x.

Thus given F0 on X0 a lisse Q`-sheaf, we may define the L-function of X0, as the
following formal product in 1 + Q`[[T ]]:

L(X0, F0, T ) =
∏

x∈|X0|
det(1− T deg(x)F

∗deg(x)
x̄ |Fx̄)−1

Note that in the case of F0 = Q` endowed with the trivial Galois action we recover that
L(X0,Q`, q

−s) = ζ(X0, s) as defined in section 1. Similarly it follows that L(X0,Q`, T ) =
Z(X0, T ), the geometric zeta function defined in section 1.

Earlier we explained how we could define an action of the geometric Frobenius corre-
spondence on the cohomology groups, and this yields a new interpretation of the L function
just defined. We now recall the notion of cohomology with compact support. By general
theory, if S/Fq is separated of finite type then there exists a compactification (also called
a Nagata compactification) S of S, i.e. a an open immersion j : S → S onto a dense open
subset where S/Fq is complete. We define the cohomology groups with compact support
H i
c(S,G) := H i(S, j!G) where j! denotes the functor ”extension by zero”. The H i

c(S, ·) form
a cohomological δ-functor [Milne EC III 1.29], and one can show that for the cases which
concern us, the groups are independent of the chosen compactification [Milne LEC 18.2].
Furthermore one can show that if f : T → S is proper then there exist canonical maps
H i
c(S,G)→ H i

c(T, f
∗G) induced by pullback.
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In the case of X0/Fq a variety, the geometric Frobenius map F : X → X is finite hence
proper, and so there is an induced map H i

c(X,F)→ H i
c(X,F

∗F) for all i. Composition with
the geometric Frobenius H i

c(X,Fr
∗
F0

) then gives an endomorphism which we denote abusively
by F ∗ : H i

c(X,F)→ H i
c(X,F). Thus we may speak about the trace Tr(F ∗|H i

c(X,F)) as an
element of Q`, as well as the alternating sum

∑
i

(−1)iTr(F ∗|H i
c(X,F)) since the cohomology

groups with compact support are finite dimensional over Q` which vanish for i greater than
twice the dimension of X.5 We have the following remarkable theorem [SGA 41/2 ”Rapport
sur les Traces” 3.2]:

Theorem 2.7.1 (Trace Formula).
∑

x∈XF

Tr(F ∗nx |Fx̄) =
2d∑
i=0

(−1)iTr(F ∗n|H i
c(X,F), where

XFn denotes the set of points x ∈ |X| fixed by the F n.

Remember that F n fixes x if and only if x lies above a point in X0 of degree n. By
proposition 2.1.1, there are only finitely many such points, hence the sum on the left is
indeed finite.

We have a whole slew of corollaries:

Corollary 2.7.2. L(X0,F0, T ) =
2d∏
i=1

det(1− T · F ∗|H i
c(X,F))(−1)i+1

Proof. Following [SGA 41/2 3.1], it suffices to show that they have the same logarithmic
derivative.6 Note that in general for M : V → V a linear transformation of a finite di-
mensional vector spaces over a field of characteristic 0 that T d

dT
log det(1 − T · M)−1 =∑

n≥1

Tr(Mn)T n. Indeed since both sides of the equation are unaffected by extension of the

ground field, we may assume M is in upper triangular form. Using the homomorphism
properties of T d

dT
log, we can reduce to the case dim(V ) = 1 where it is a simple calculation.

5There is a delicate issue here with how to define the trace in terms of the limit lim←−Tr(F
∗|Hi

c(X,Fn))

then tensoring with Q` since the Hi
c(X,Fn) are not necessarily free. The solution lies in using notions from

derived categories which we will not discuss. See [Milne LEC 13.11]
6Remember that the logarithmic derivative of f in 1 + Q`[[T ]] is defined as T d

dT log f = T · f ′

f where f ′

is the formal derivative of f with respect to t. This expression makes since as f is invertible in Qell[[T ]].
Furthermore, it’s easy to see that since Q` is of characteristic 0, the logarithmic derivative is an injective
homomorphism (1 + Q`[[T ]],×)→ (Q`[[T ]],+).
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Then we have

T
d

dT
log L(X0,F0, T ) =

∑

x∈|X0|

∑

n≥1

deg(x)Tr(F
∗n·deg(x)
x̄ |Fx̄)T n·deg(x)

=
∑

n≥1

T n·deg(x)
∑

x∈|X0|
deg(x)Tr(F

∗n·deg(x)
x̄ |Fx̄)

=
∑

m≥1

Tm
∑

x∈|X0|
deg(x)|m

deg(x)Tr(F ∗mx̄ |Fx̄)

=
∑

m≥1

Tm
∑

x∈XFm

Tr(F ∗mx̄ |Fx̄)

=
∑

m≥1

Tm
∑

i

(−1)iTr(F ∗|H i
c(X,F))

Where the last equality follows from the trace formula. Taking the logarithmic derivative of
the other side we have

T
d

dT
log

∏

i

det(1− F ∗|H i
c(X,F))−1 =

∑

i

(−1)iT
d

dT
log det(1− T · F ∗|H i

c(X,F))−1

=
∑

i

(−1)i
∑

m≥1

Tr(F ∗|H i
c(X,F))Tm

which is exactly what we wanted to show.

Since cohomology with compact support for a projective variety is just given by the
usual cohomology groups, we have as an immediate consequence of this corollary that for
X0 projective

Z(X0, T ) =
d∏

i=0

det(1− T · F ∗|H i(X,Q`))
(−1)i+1

.

Hence we may restate the Riemann hypothesis in 2.1.4 in the following way

Theorem 2.7.3 (Riemann Hypothesis, version 2). If X0/Fq is a smooth, geometrically
connected, proper variety of pure dimension d, then for each i the polynomial det(1 − T ·
F ∗|H i(X,Q`))

(−1)i+1
are q-Weil polynomials independent of (` 6= p).

Remark 2.7.4. Actually, the Riemann hypothesis in this form would follow from the seem-
ingly weaker statement that all of the eigenvalues of F ∗|H i(X,Q`) are algebraic numbers,
all of whose conjugates have archemedian absolute value qi/2. The argument is elementary
and can be found in [Weil I 1.7].
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2.8 The Case of Affine Curves

Here we analyze the most basic situation of the previous sections, that of an affine curve over
Fq. In the end we will only be concerned with open subsets of the affine line Spec(Fq[t]), but
the results are completely general.

Here we fix some simplifications in the notation consistent with Katz’s article which
we will use throughout the rest of this exposition. Let U0/Fq be a smooth, geometrically
connected affine curve and let U/Fq be the base change to the algebraic closure. (As before,
the subscript ”0” will generally be used to denote schemes over Fq, and dropping the 0 will
be used to denote the base change to the algebraic closure.) When dealing with fundamental
groups, we sometimes avoid choosing base point explicitly unless it needs referencing in a
proof. Thus ignoring base points, by 2.3.4 we have the following exact sequence:

1→ π1(U)→ π1(U0)→ Gal(Fq/Fq)→ 1

We also refer to π1(U) as the geometric fundamental group denoted by πgeom1 , and
π1(U0) as the arithmetic fundamental group denoted by πarith1 . By an `-adic local
system F on U0, we mean a lisse Q`-sheaf on U0, which by 2.4.14 corresponds to a finite
dimensional Q` representation of π1(U0) 7. We note that ` is always assumed different than
the p, the characteristic of U0. We denote the geometric Frobenius by Frobq, which is
the inverse of the Frobenius substitution in Gal(Fq/Fq). For a closed point ℘ ∈ |U0|, we
have a corresponding morphism Gal(Fq/k(℘)) ↪→ πarith1 which is well defined up to inner
automorphism of πarith1 , and we denote by Frob℘ any element in the conjugacy class of the
image of f−1

℘ , where f℘ is the Frobenius substitution in Gal(Fq/k(℘)). Thus we may write
the L-function defined in section 2.7 in the following way:

L(U0,F , T ) =
∏

℘∈|U0|
det(1− T deg(℘)Frob℘|F)−1

Where by Frob℘|F we are of course referring to the representation of Gal(Fq/k(℘)) given
by choosing a geometric point x̄ : Fq → ℘ → U0 and considering the Galois module Fx̄.
The independence of such a choice was discussed above, so indeed this notation makes sense.
Clearly we have that L(U0,F , T ) is an element of 1 + Q`[[T ]].

In the previous chapter we introduced the groups H i
c(U,F), and mentioned that in this

case they are finite dimensional and vanish for i 6= 0, 1, 2. However, as U is affine it is a
simple consequence of the definitions that H0

c (U,F) = 0. We have the following proposition
concerning the structure of H2

c (U,F):

Proposition 2.8.1. Fixing a geometric point x̄ of U0, H2
c (U,F) is isomorphic as a Gal(Fq/Fq)-

module to the Tate twist (Fx̄)πgeom1
(−1) of the coinvariants (Fx̄)πgeom1

, the largest quotient of

7Technically we should write F0 for a local system on U0 and reserve F for it’s pullback to πgeom
1 .

However, it should be clear from the surrounding discussion what is going on.



CHAPTER 2. INTRODUCTION TO THE RIEMANN HYPOTHESIS 22

Fx̄ on which πgeom1 acts trivially 8.

We recall the definition of the Tate twist of an `-adic local system F . Consider the
lisse Z`-sheaf µ` on Spec(Fq) from example 2.4.11. It corresponds to the one dimensional Z`
representation of Gal(Fq/Fq) on which the Frobenius substitution acts by multiplication by
q, which we denote by Z`(1). We denote the dual of this representation by Z`(−1), on which
the Frobenius substitution acts by multiplication by 1/q. (Recall that as we assumed p 6= `,
q is indeed invertible in Z` and this makes sense.) Thus by taking higher tensor powers, we
can define Z`(n) for any integer n and we denote the corresponding Q`-sheaf by Q`(n). Now
we may pull this sheaf back U0 and tensor by F , and we denote the corresponding product
by F(n). In fact we may generalize this construction: let α ∈ Q` be contained in the unit
group Uλ ⊂ R× for R the ring of integers in some finite extension E/Q`. Define a morphism
Z → Uλ by 1 7→ α. Then since Uλ is profinite, there exists a unique continuous extension
Gal(Fq/Fq) ' Ẑ→ Q`. Tensoring with E defines a Q`- representation of Gal(Fq/Fq) denoted
by Q`(α). As before, we may pull it back and tensor by F for a representation of π1(U0)
which we denote by F(α).

We give a few lemmas before the proof of the proposition:

Lemma 2.8.2. Let F ' Y be an flc sheaf on X corresponding to a finite π1(X, x̄) module.

Then there is a canonical isomorphism between the fixed points Fπ1(X,x̄)
x̄ and the global sections

F(X).

Proof. We have that

H0(X, Y ) = HomX(X, Y )

' HomSh(X)(X, Y ) [Y oneda]

' Homπ1(X,x̄)−Rep({∗}, Y (x̄)) [proposition 2.4.7]

' Y (x̄)π1(X,x̄).

Corollary 2.8.3. If F a lisse Q` sheaf on X, then there is a canonical isomorphism

Fπ1(X,x̄)
x̄ ' F(X).

Proof. This is a formal consequence of the fact that the functor which assigns a representation
to its fixed points is right adjoint to the inclusion functor assigning a vector space to the
a representation with the trivial action. Since right adjoints preserve limits, lim←−F

π1(X,x̄)
x̄ '

(lim←−Fx̄)
π1(X,x̄).

8Recall that the coinvariants of a representation V of G can be written explicitly as
VG = V/〈v − g · v|g ∈ G, v ∈ V 〉
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Lemma 2.8.4. Let G a group operating on a finite dimensional vector space V . Then there
is a canonical isomorphism (V G)∨ ' (V ∨)G where ·∨ denotes the dual, ·G is the functor as-
signing a representation to its fixed points, and ·G is the functor assigning to a representation
to its space of coinvariants, the largest quotient representation on which G acts trivially.

Proof. Taking duals is anti-equivalence of the category of finite dimensionalG-representations
with itself. Let i be the functor taking a finite dimensional vector space to the corresponding
representation of G with the trivial action. Then there are natural isomorphisms:

HomG−Rep(i(V ),W ) HomV ect(V,W
G)

HomG−Rep(W∨, i(V )∨) HomV ec((W
G)∨, V ∨)

'

' '

'

Since i(V )∨ = i(V ∨), we conclude by the Yoneda lemma.

Remark 2.8.5. Let N ↪→ G is a normal subgroup of G, G � H the quotient, and V
a representation of G. Then VN is naturally an H representation. Indeed, the submodule
〈m−h·m|m ∈M,h ∈ N〉 is G-stable, since g ·(m−h·m) = g ·m−gh·m = g ·m−ghg−1g ·m =
g ·m− h′g ·m. Thus there is a natural action of G on VN , and here N acts trivially, hence
defines a representation of H. By similar reasoning, the submodule of fixed points V N also
give a natural H-representation. For example, if V is a representation of πarith1 , then Vπgeom1

is naturally a Gal(Fq/Fq)-representation. If for a closed point ℘ ∈ |U0| we identify the image

of Frob℘ in Gal(Fq/Fq) with Frob
deg(℘)
q , then Frob℘ acts on Vπgeom1

as Frob
deg(℘)
q .

Proof of Proposition 2.8.1. By Poincaré duality, there is perfect pairing
H0(U,F) ⊗ H2

c (U,F∨(1)) → Q` such that the isomorphisms H0(U,F) ' H2
c (U,F∨(1))∨

and H0(U,F)∨ ' H2
c (U,F∨(1)) respect the action of the Frobenius endomorphism. By

substituting F∨(−1) for F in the above equation, we have that H0(U,F∨(1))∨ ' H2
c (U,F).

By 2.8.3 and 2.8.5 we have a natural isomorphisms H0(U,F∨(1))∨ ' (F∨x̄ (1))π
geom
1 )∨ '

((F∨x̄ (1))∨)πgeom1
' Fx̄(−1)πgeom1

' (Fx̄)πgeom1
(−1) where the last isomorphism follows from the

fact that πgeom1 acts trivially on Q`(−1) by definition, since it is the pullback of a Gal(Fq/Fq)-
representation.

Combining 2.8.3 with 2.7.2 we have the following immediate corollary:

Corollary 2.8.6.

L(U0,F , T ) =
det(1− TFrobq|H1

c (U,F))

det(1− qTFrobq|(Fx̄)πgeom1
)
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Chapter 3

Katz’s Main Argument

3.1 Purity

Fix an embedding ι : Q` → C. We make the following two definitions:

Definition 3.1.1. A local system F is ι-pure of weight n for some integer n if for all
closed points ℘ of U0, all of the eigenvalues of Frob℘ on F have, via ι, complex absolute
value N(℘)n/2.

Definition 3.1.2. A local system F is ι-real if, via ι, for all closed points ℘ the reversed
characteristic polynomial det(1− TFrob℘|F)−1 has coefficients in R.

By the same kind of argument found in corollary 2.7.2, we have that

det(1− TFrob℘|F)−1 = exp(
∑

n≥1

Tr(Frobn℘|F)
T n

n
).

Thus we see that the condition that F is ι-real is equivalent to the condition that ι(Tr(Frobn℘|F))
is real for all n. Now the key point is that if F is ι-real, then every even tensor power F⊗2k

is not only ι-real, but also ι(Tr(Frobn℘)|F⊗2k)) = ι(Tr(Frobn℘)2k|F)) ∈ R≥0. Hence each of
the Euler factors

det(1− T deg(℘)Frob℘|F⊗2k)−1 = exp(
∑

n≥1

Tr(Frobn℘)|F)2kT
n·deg(℘)

n
)

is a power series, via ι, in 1 + TR≥0[[T ]], i.e. with constant term 1 and non-negative real
coefficients.

We have the following theorem originally due to Deligne:

Theorem 3.1.3. Let F a local system on U0 which is ι-real. Suppose that every even
tensor power F⊗2k satisfies the following condition: every eigenvalue β2k of Frobq on the
coinvariants F⊗2k

πgeom1
has |ι(β2k)| ≤ 1. Then for each closed point ℘ of U0, every eigenvalue

αi,℘ of Frob℘ on F has |ι(αi,℘)| ≤ 1.
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Proof. The argument is simple. We make some observations:

1. The hypotheses imply that each Euler factor det(1− T deg(℘)Frob℘|F⊗2k)−1 lies in 1 +
TR≥0[[T ]] via ι.

2. Thus the L function L(U0,F , T ) lies in 1 + TR≥0[[T ]].

3. The two together imply that L(U0,F , T ) dominates each Euler factor coefficient by
coefficient.

By corollary 2.8.6 and the hypothesis on the coinvariants, the L-function is, via ι, holomor-
phic on the disc T < 1/q. Now let ℘ a closed point of U0. Then by observation 3 above,
the Euler factor det(1− T deg(℘)Frob℘|F⊗2k)−1 is holomorphic in the same disc. This means
that each eigenvalue of Frob℘|F⊗2k has, via ι, absolute value ≤ qdeg(℘). But if α is an eigen-
value of Frob℘|F , then α2k is an eigenvalue of Frob℘|F⊗2k. Hence |ι(α2k)| ≤ qdeg(℘), so that
|ι(α)| ≤ qdeg(℘)/2k. Since this equality holds for all k, letting k →∞ we get |ι(α)| ≤ 1.

Corollary 3.1.4. Let F an `-adic local system on U0 which is ι-real. Suppose that for some
closed point ℘0, every eigenvalue αi,℘0 of Frob℘0 on F has, via ι, |ι(αi,℘0)| ≤ 1. Then for
every closed point ℘ of U0, every eigenvalue αi,℘ has |ι(αi,℘)| ≤ 1.

Proof. By the theorem it suffices to show that every even tensor power F⊗2k has the property
that every eigenvalue β2k of Frobq on (F⊗2k)πgeom1

has |ι(β2k)| ≤ 1. Since πgeom1 acts trivially
on the coinvariants, it follows by remark 2.8.5 that for any closed point ℘ ∈ |U0|, we have

that Frob℘ acts as Frob
deg(℘)
q . Thus let ℘0 be such that the eigenvalues of Frob℘0|Fπgeom1

are ≤ 1 via ι. Then the eigenvalues of Frob℘0|F⊗2k
πgeom1

are just the 2k-th powers of these

eigenvalues, hence are all ≤ 1 via ι. It follows that |ι(βdeg(℘)
2k )| ≤ 1, so that |ι(β2k)| ≤ 1 and

we win.

The goal now is to prove the following variant of corollary 3.1.4:

Theorem 3.1.5. Let F be an `-adic local system on U0 which is ι-real. Suppose that for
some closed point ℘0, every eigenvalue α℘0,i of Frob℘0|F has |ι(α℘0,i)| = 1. Then for every
closed point ℘, every eigenvalue α℘,i of Frob℘|F has |ι(α℘,i)| = 1. In other words, F is ι
pure of weight zero as soon as it is so for one closed point.

However, in the end we will restrict ourselves here to the case where U0 is an open subset
of A1

Fq , since this is all we will actually need. The proof for U0 a general affine, smooth,
geometrically connected curve is given in Katz’s paper, but requires the Riemann hypothesis
for curves. First a few lemmas:

Theorem 3.1.6 (Localization sequence). Let F be a sheaf on X and let U X Z◦j /
i

be a triple with j an open immersion, i a closed immersion, and Z = X \ U . Then there is
a long exact sequence

. . .→ H i
c(U,F|U)→ H i

c(X,F)→ H i
c(Z,F|Z)→ . . .
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Proof. See [Milne EC III 1.29,30]

Lemma 3.1.7. Let U0 be an open subset of A1
Fq with complement S0, a finite set of closed

points. Then Frobq|H1(U,Q`) does not have 1 as an eigenvalue.

Proof. First note that it suffices to prove the lemma on replacing the affine line minus a
finite number of points by the projective line minus a finite number of points: just use
the isomorphism U0 := A1

Fq \ S0 ' P1
Fq \ (S0 ∪ {∞}) =: V0 over Fq, so that H i(U,Q`) '

H i(V,Q`). Now V is affine, so H0
c (V,Q`) = 0. From the Kummer sequence on P1

Fq
, we see

that H1(P1
Fq
,Z/`nZ) = 0, since it is isomorphic the `n-torsion subgroup of Pic(P1

F q
) which

is torsion free. Thus H1
c (P1

Fq
,Q`) = 0 as well.

Using the localization sequence for the triple V P1
Fq

S ∪ {∞} = S ′◦ / given

by the previous lemma, we then get a short exact sequence

0→ H0(P1
Fq ,Q`)→ H0(S ′,Q`)→ H1

c (V,Q`)→ 0

So in order to prove the lemma, it is enough to show that H0(S ′,Q`) is of weight 0. For
then H1

c (V,Q`) is of weight 0, and by Poincaré duality H1(V,Q`) ' H1
c (V,Q`)⊗Q`(−1), so

H1(V,Q`) would be of weight −2.

Now if S ′0 = {x1, . . . xn}, then H0(S ′,Q`) ' ⊕nı=1Q
deg(xi)

` . The geometric Frobenius acts
by cyclic permutation in each orbit corresponding to an xi, so the Frobenius action on the
0-th cohomology group also acts by cyclic permutation of the basis vectors with blocks
corresponding to these orbits. It follows that Frobq|H0(S ′,Q`) is of finite order, hence all
of its eigenvalues are roots of unity. Thus they are all of absolute value 1, which is what we
wanted to show.

Lemma 3.1.8. Let L be an `-adic local system of rank 1 on U0. Then there exits a positive
integer n such that the n-th tensor power L⊗n is geometrically constant, i.e. Frob℘|L⊗n =
αdeg(℘) for all closed points ℘ and for some α ∈ Q`.

Proof. By the previous lemma, 1 is not an eigenvalue of Frobq|H1(U,Q`). Let L be the `-adic
local system on U0 as in the statement of the theorem. Then by definition, L corresponds
to a homomorphism π1(U0) → R× where R is the ring of integers in some finite extension
Eλ/Q`. Since the residue field of R is finite of size n, replacing L by L⊗n guarantees that the
image lies in set of principal units 1 + λR. Raising to the `-th power gives a homomorphism
φ : π1(U0)→ 1 + `λR. Taking logarithms gives us a homomorphism π1(U0)→ (Q`,+). The
restriction of this homomorphism to π1(U) corresponds1 to an element of H0(U,Q`) which is
fixed by Frobq, hence it must be zero since 1 is not an eigenvalue. It follows that the image
of π1(U) under φ is trivial, hence the lemma.

1See the discussion following 5.2.3 in the appendix.
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Proof of Theorem 3.1.5: Let F be an `-adic local system of rank n on π1(U0) which is ι-real,
and ℘0 the closed point in the hypothesis of the theorem. By corollary 3.1.4, for any closed
point ℘ of U0, all of the eigenvalues of Frob℘|F have absolute value ≤ 1, so all the eigenvalues
have absolute value exactly 1 if and only if |det(Frob℘|F)| = 1. Thus we want to prove that
the one dimensional determinant representation L = ∧nF is ι-pure of weight 0. To do this,
we may replace the determinant representation by any tensor power L⊗k. But by the previous
lemma, L⊗k is geometrically constant for some k. In particular Frob℘0|L⊗k = αdeg(℘), so by
the hypothesis on the eigenvalues of Frob℘0|F we have |ι(α)| = 1. It follows that L⊗k is
ι-pure of weight 0, which proves the theorem.

3.2 The Riemann Hypothesis for Hypersurfaces and

the Point Counting Formula

We want to compute the cohomology groups of a smooth hypersurface X ↪→ Pn+1 of dimen-
sion n. We have the following classical lemma:

Lemma 3.2.1. Let X ↪→ Pn+1
k as above defined by an equation f of degree d. Then U :=

Pn+1
k \X is affine.

Proof. Take the d-the Veronese embedding vd : Pn+1
k ↪→ PNk , under which our X maps to the

hyperplane section of vd(Pn+1
k ) given by the hyperplane H defined by the coefficients of f .

The complement of this hyperplane section in vd(Pn+1
k ) is a closed set in PNk \H ' AN

k , hence
affine.

We can use the cohomology groups of Pn+1
k to calculate those of X. To recall, the

cohomology groups of projective space over an algebraically closed field are as follows [Milne
EC VI 5.6]:

Hr(Pn+1
k ,Q`) =

{
0 if r odd

Q`(−r/2) if r even

and of course they vanish for r > 2(n+ 2). We need the following classical results:

Lemma 3.2.2. If U is affine and of finite type over an algebraically closed field, then
H i(U,F) = 0 for all i > dim(U) and any flc sheaf F .

Proof. See [Milne EC VI 7.2]

Theorem 3.2.3 (Gysin sequence). Let X be smooth variety of dimension m, Z a smooth
subvariety of codimension c and U = X \ Z. There are natural isomorphisms

Hr(X,F)→ Hr(U,F|U) for 0 ≤ r ≤ 2c− 2



CHAPTER 3. KATZ’S MAIN ARGUMENT 28

and a long exact sequence

0→ H2c−1(X,F)→ H2c−1(U,F|U)→ H0(Z,F|Z(−c))→ H2(X,F)→ . . .→ Hm−1(X,F)→
Hm−1(U,F|U)→ H2(m−c)(Z,F|Z(−c))→ H2m(X,F)→ H2m(U,F|U)→ 0

where the maps Hr(Z,F|Z(−c))→ Hr+2c(X,F) are called the Gysin maps.

Proof. See [Milne EC VI 5.4]

Proposition 3.2.4. The L-function of a hypersurface X of dimension n is given by L(X,Q`, T ) =
L(Pn,Q`, T ) · P where P is a polynomial with rational coefficients

Proof. Using the Gysin sequence for U Pn+1 X◦j /
i and lemmas 3.2.1,2 for the

vanishing of Hr(U,Q`) for r ≥ n + 2, we have that Hr(X,Q`) ' Hr+2(Pn+1,Q`(1)) '
Hr(Pn,Q`) for r ≥ n+ 1 and a surjection Hn(X,Q`)� Hn(Pn,Q`). Using Poincaré duality
we get that Hr(X,Q`) ' Hr(Pn,Q`) for i < n, so the difference between the cohomology
groups of X and Pn is measured entirely by the kernel of the Gysin map Hn(X,Q`) �
Hn(Pn,Q`), which we denote by Primn(X,Q`), the primitive cohomology group.

It follows from the cohomological formulation of the L-function that

L(X,Q`, T ) = det(1− TFrobq|Primn(X,Q`))
(−1)n ·

2n∏

r=0

(1− qr/2T )(−1)r+1

= det(1− TFrobq|Primn(X,Q`))
(−1)n · Z(Pn,Q`, T )

Hence by rationality of the zeta function of X and Pn, det(1−TFrobq|Primn(X,Q`))
(−1)n

is a polynomial with rational coefficients. In fact this also shows that each of the factors in
the cohomological formulation of the zeta function of a smooth hypersurface is a polynomial
with rational coefficients.

Corollary 3.2.5. In the case of smooth hypersurfaces, the Riemann hypothesis is equivalent
the the point counting forumula:

|X(Fqr)| = |Pnqr |+O(qrn/2)

Proof. From the proposition, the Riemann hypothesis is equivalent to the fact that the
eigenvalues of Frobq|Primn(X,Q`) all have complex absolute value qn/2. By the functional
equation, it would be enough to show that they have complex absolute value ≤ qn/2. On the
other hand, by Grothendieck’s trace formula we get that
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|X(Fqr)| =
2n∑

i=1

(−1)iTr(Frobrq|H i(X,Q`))

=
2n∑

i=1

(−1)iTr(Frobrq|H i+2(Pn+1
k ,Q`(1))) + (−1)nTr(Frobrq|Primn(X,Q`))

=
2n∑

i=1

(−1)iTr(Frobrq|H i+2(Pnk ,Q`)) + (−1)nTr(Frobrq|Primn(X,Q`))

= |Pnk(Fqr)|+ (−1)nTr(Frobrq|Primn(X,Q`))

= |Pnk(Fqr)|+
∑

i

αri

where the αi in the last line are the eigenvalues of Frobrq|Primn(X,Q`) Hence one checks
immediately that the Riemann hypothesis for hypersurfaces implies the point counting for-
mula:

|X(Fqr)| = |Pnqr |+O(qrn/2).

The converse is more subtle. Let ar =
∑
i

αri , so that by hypothesis there is a constant C

such that |ar| ≤ C · q nr2 for r ≥ N . Now

∑

r≥1

arT
r =

∑

i

∑

r≥1

αriT
r =

∑

i

αiT

1− αiT
,

which has poles at each T = 1/αi. On the other hand,

|
∑

r≥1

arT
r| ≤ |M(T )|+ C

∑

r≥N
(q

n
2 |T |)r ≤ |M(T )|+ C

∑

r≥1

(q
n
2 |T |)r = |M(T )|+ Cqn/2|T |

1− qn/2|T | ,

where M(T ) is just the polynomial taking care of the first N terms of the sequence. In

any case, this converges for |T | < q
−n
2 . This implies |1/αi| ≥ q

−n
2 for all i, so that |αi| ≤ qn/2

for all i.

3.3 A Deformation Argument

We begin with a lemma concerning smoothness. Using the definition from [Hartshorne
III.10], a morphism f : X → Y of irreducible varieties is smooth of relative dimension
r if it is flat, dimX − dimY = r, and dimk(x)(ΩX/Y × k(x)) = r for all points x ∈ X.
By [Hartshorne II.8.9], as X is irreducible this last requirement is equivalent to asking that
ΩX/Y is locally free of rank r.
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Lemma 3.3.1. Let f : X → Y be a flat proper morphism of irreducible varieties, and suppose
there exists a y ∈ Y such that Xy → Spec(k(y)) is smooth. Then there is a non-empty open
U ⊂ Y containing y such that restriction f : f−1(U)→ U is smooth and proper.

Proof. Let r be the relative dimension of f so that r = dim Xy. We want to show that there
is a non-empty open U ⊂ Y such that ΩX/Y is locally free of rank r on f−1(U).

Now Xy → Spec(k(y)) is smooth so for any x ∈ f−1(y), r = dimk(x)(ΩXy/k(y)) =
dimk(x)(ΩX/Y ⊗ k(x)). It follows from Nakayama’s lemma that for each x ∈ f−1(y) there
exists a neighborhood Ux such that dimk(z)(ΩX/Y ⊗ k(z)) ≤ r for all z ∈ Ux. But for any
z ∈ X, we must have that dimk(z)(ΩX/Y ⊗ k(z)) ≥ r for all z ∈ Ux, which follows from
flatness and [Hartshorne II.8.6A]. It follows that the set V of points where f is smooth of
relative dimension r is open2 in X and contains f−1(y). As f is proper f(X \ V ) is closed,
and U = Y \ f(X \ V ) is open in Y and satisfies the property that f |f−1(U) is smooth and
proper.

Remark 3.3.2. We note that the assumptions in the above lemma are superfluous, but
simplify the proof and arise for free in the following theorem where it is applied. The more
general version can be found in [EGA 4 Exp. XVII 5.1] which states that smoothness at a
point x ∈ X is equivalent to the fact that if y = f(x) then the map of local rings Oy → f∗OX
is flat and f−1(y) is smooth over k(y).

Theorem 3.3.3. Let X0,0/Fq, X1,0/Fp be two hypersurfaces of dimension n defined respec-
tively by equations F and G of degree d. Suppose that we know the Riemann hypothesis for
X1,0, i.e. that the eigenvalues of Frobp|H i(X1,Q`) are p-Weil numbers of weight i. Then
the Riemann hypothesis holds for X0,0.

Proof. Consider the 1-parameter family X defined by the equation (1− t)F + tG:

X Pn+1 × A1

A1

i

f

Then f is a projective morphism between irreducible varieties. It is also flat, since Fq[T ] is
a PID. By hypothesis, the fibres over t = 0, 1 are smooth, hence by the lemma there is an
open set U0 ⊂ A1 containing the primes t = 0, 1 such that f : f−1U0 → U0 is smooth and
proper.

Now by smooth and proper base change3, Rif∗Q` is an `-adic local system on U0 for each
i. These are also ι-real for any ι since for any geometric point ū, det(1−TFrob℘|(Rif∗Q`)ū) =
det(1− TFrobN(℘)|H i(X℘,Q`)), which is a polynomial with rational coefficients since it is a
factor in the zeta function of a smooth hypersurface. Fixing such a point ū1 over the prime

2the free locus of a specified rank of a coherent sheaf on a Noetherian scheme is always open.
3See example 2.6.3
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t = 1, by hypothesis (Rnf∗Q`)ū1 has Frobenius eigenvalues of absolute value qn/2. Hence
(Rnf∗Q`(n/2))ū1 has Frobenius eigenvalues of absolute value 1. Furthermore Rnf∗Q`(n/2) is
also ι real for any ι since the Tate twist is only affected by which square root of q is chosen in
R, and even then this is only an issue when n is odd. Thus by theorem 3.1.5, Rnf∗Q`(n/2) is
pure of weight 0 (with respect to any ι), so Rnf∗Q` is pure of weight n. In particular, fixing
a geometric point ū0 over t = 0, (Rnf∗Q`)ū0 has Frobenius eigenvalues of absolute value qn/2,
which implies the result.
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Chapter 4

Counting Points

Using the point counting formula from the previous section, we have just showed that in
order to prove the Riemann hypothesis for a hypersurface of dimension n and degree d over
Fq, it suffice to prove that there is some hypersurface X of dimension n and degree d over
Fp satisfying the equality

|X(Fq)| = |PnFq(Fq)|+O(qn/2)

for varying Fq/Fp. In Weil’s paper ”Number of Solutions of Equations in Finite Fields”,

he proved that the Fermat hypersurfaces defined by
n+2∑
i=1

Xd
i satisfy this inequality whenever

d is prime to p. Thus we are left to deal with the case of p|d, but the approach Katz takes
to solve this generalizes to cover the case of the Fermat hypersurfaces as well.

4.1 d=2

When d = 2, the only prime to check is p = 2. Now there is a general formula for the Betti
number βn of the middle cohomology group of a hypersurface of dimension n:

βn =
(d− 1)n+2 + (−1)d(d− 1)

d
+ ε

Where ε is 0 for n odd, 1 for n even. Thus we see that in the case d = 2 and n odd
that the n-th cohomology group vanishes and there is nothing to prove. In this case the
zeta function for X is the same as that of Pn. Now assume n = 2m is even, and consider

the smooth hypersurface X ⊂ P2m+1 defined by
m+1∑
i=1

XiXm+1+i = 0. We have the following

proposition:

Proposition 4.1.1. X is a smooth hypersurface satisfying |X(Fq)| = |P2m(Fq)|+qm for any
characteristic p and any extension Fq.
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Proof. That X is smooth can be checked using the Jacobian criterion. For a I a multi-index
and monomial XI , let N(XI = a) be the number of solutions in Fq to the equation XI = a.
Then the proposition is equivalent to the statement that

∑

a1+...+am+1=0

N(X1Xm+2 = a1) · · ·N(Xm+1X2m+2 = am+1) = q2m+1 + qm+1 − qm

where the ai range over Fq. The left hand side counts the number of affine solutions, so
indeed if the equation holds then the number of projective solutions is just (q2m+1 + qm+1 −
qm− 1)/(q− 1) = |P2m(Fq)|+ qm. To demonstrate the equation we also use the fact that for
b 6= 0,

∑

a1+...+am+1=b

N(X1Xm+1 = a1) · · ·N(Xm+1X2m+2 = am+1) = q2m+1 − qm

Both equations follow by a straightforward induction argument.

4.2 d ≥ 3

For degree d ≥ 3 and p|d we analyze Gabber’s hypersurface given by

Xd
1 +

n+1∑

i=1

XiX
d−1
i+1

Again one checks immediately using the Jacobian criterion that this defines a smooth hy-
persurface for any p, which we call X. In order to prove that

|X(Fq)| = |Pnk(Fq)|+O(qn/2)

it is enough to prove that the number of affine solutions for the defining equation satisfies

|Xaff (Fq)| = (q − 1)(|Pnk(Fq)|+O(qn/2)) + 1 = qn+1 +O(q
n+2

2 )

We will show that Gabber’s hypersurface satisfies this bound. Actually, we will prove
something much more general which will imply that the Fermat hypersurfaces satisfy this
equation as well. First we make a definition:

Definition 4.2.1. Let N ≥ 1 be an integer, and W = (w1, . . . , wN) be an N -tuple of non-
negative integers. Write XW for the monomial Xw1

1 · · ·XwN
N . We say that a set of monomials

{XWν}ν is linearly independent if the set of integer vectors Wν are linearly independent
in QN .

For example, the monomials occurring in the equations defining Gabber’s hypersurface
and the Fermat hypersurfaces are linearly independent. We have the following theorem
which implies our result:
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Theorem 4.2.2. Let N ≥ 1, and let XW1 , . . . , XWN be N linearly independent monomials
in N variables. Suppose that each variable occurs in at most 2 of these monomials. Then
for the affine hypersurface V defined by

∑
iX

Wi = 0 in AN , and for various finite fields Fq
we have

|V (Fq)| = qN−1 +O(qN/2)

If n = dimX, then by setting N = n+2 we see that theorem 4.2.2 implies the point count
formula for the Fermat hypersurfaces and Gabber’s hypersurface. Theorem 4.2.2 follows from
the following theorem by Delsarte. 1

Theorem 4.2.3 (Delsarte’s Theorem). Let N > k ≥ 0, and let XW1 , . . . , XWN−k be linearly
independent monomials in N variables. Let V ⊂ AN be the affine hypersurface defined by∑

iX
Wi = 0. Denote by V ∗ ⊂ V the open set of all closed points for which all coordinates

are invertible. Then for various finite fields Fq we have that

|V ∗(Fq)| =
(q − 1)N

q
+O(q(N+k)/2)

We first show that Delsarte’s theorem implies theorem 4.2.2. Let XW1 , . . . , XWN be N
linearly independent monomials in N variables. Setting all but d ≥ 1 of the variables equal
to 0, say Xd+1, . . . , XN = 0, we are left with only those monomials XW

i which do not contain
these variables. Furthermore, the remaining monomials are linearly independent, being just
a subset of a linearly independent set of monomials. Let S ⊂ {1, . . . , N}, and let V ∗(S)(Fq)
be the set of affine solutions for which precisely the variables Xi for i ∈ S take nonzero
values, i.e. V ∗(S)(Fq) = V (Fq)∩D(

∏
ı∈S

Xi) . Then we have the following elementary lemma:

Lemma 4.2.4. For S ⊂ {1, . . . , N} we have that

V ∗(S)(Fq) =
(q − 1)|S|

q
+O(qN/2)

Proof. If S = ∅ then there is only one solution, namely (0, . . . , 0), which trivially satisfies
the equation. If 1 ≤ |S| ≤ N/2, then there are at most N/2 non-zero variables assuming at
most q − 1 values. Hence the number of solutions V ∗(S)(Fq) ≤ (q − 1)N/2, so the equation
is true with just the O(qN/2) term alone. Now suppose N/2 < |S| ≤ N . Then N − |S|
of the variables have been set to zero, so by the hypothesis that a variable occurs in at
most 2 monomials, we have set at most 2(N − |S|) of the monomials to zero. Thus at least
N − 2(N − |S|) = 2 · |S| − N of the (linearly independent) monomials remain. Applying
Delsarte’s theorem by setting N = |S| and k ≤ N − |S|, we have that the error term in

1However, the proof given in Delsarte’s paper is extremely elementary and uses nothing more than
techniques in elementary number theory akin to those of Weil’s proof. In any case, we follow Katz’s argument
here because it gives a nice application of some basic theory of affine group schemes.
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theorem 4.2.2 is O(q(|S|+k)/2) which is O(q(|S|+N−|S|)/2) = O(qN/2). Hence again by Delsarte’s
theorem we have that

V ∗(S)(Fq) =
(q − 1)|S|

q
+O(qN/2)

The lemma plus Delsarte’s theorem immediately imply theorem 4.2.2. Indeed we have
that

|V (Fq)| =
∑

S⊂{1,...,N}
V ∗(S)(Fq)

= (
∑

S⊂{1,...,N}

(q − 1)|S|

q
) +O(qN/2)

= qN−1 +O(qN/2)

where the last equality follows from the fact that
∑

S⊂{1,...,N}

(q−1)|S|

q
is just the binomial

expansion of ((q−1)+1)N

q
.

4.3 Delsarte’s Theorem

We now prove Delsarte’s theorem (4.2.3). With the notation as in the statement of the
theorem, let XWi be the N − k linearly independent monomials in N variables. Let GN

m =
Spec(Z[X1Y1 − 1, . . . , XNYN − 1]) be the split N -torus over Spec(Z). We view the XWi

i

as a morphism between split tori φ : GN
m → GN−k

m via (X1 . . . , XN) 7→ (XW1 , . . . XWN−k).
By duality and the assumption on the linear independence of monomials, this morphism
corresponds to an injective morphism φ∨ : ZN−k → ZN sending the i-th basis vector to Wi.
Thus φ is surjective considered as a morphism of fppf sheaves. 2

We will prove the slightly more general version of Delsarte’s theorem:

Theorem 4.3.1. Let N > k ≥ 0, and let φ : GN
m → GN−k

m be a surjective morphism of split
tori. Denote by σ : GN−k → A1 the function which ”sums coordinates”. Then for various
finite extensions Fq/Fp we have the estimate:

|{x ∈ GN
m(Fq)|σ(φ(x)) = 0}| = (q − 1)N

q
+O(q(N+k)/2)

2See section 5.1 in the appendix for the content of these duality statements and the ideas used in the
rest of the section.
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To see how this implies Delsarte’s theorem, note that the set on left hand side of the
equation in the theorem is precisely what is denoted by V ∗(Fq) in the statement of Delsarte’s
theorem. Aside from the basic facts recalled in appendix 5.1 about diagonalizable group
schemes, the only key elements in this proof are some basic facts about character sums and
Gauss sums, so we do this briefly here. Recall that for a finite group G that the group of
characters G∨ = Hom(G,C×) has the property that for χ ∈ G∨,

∑

g∈G
χ(g) =

{
0 if χ 6= 1

|G| if χ = 1

This is simply because if χ(h) 6= 1 for some h ∈ G, then

χ(h) ·
∑

g∈G
χ(g) =

∑

g∈G
χ(h)χ(g) =

∑

g∈G
χ(h · g) =

∑

g′∈G
χ(g′)

since multiplication by h is a bijection from G to itself. For a finite abelian group, one
has that G ' G∨. This is most easily seen by first proving the result for cyclic groups, then
appealing to the classification theorem of finite abelian groups.

For a finite field Fq, one can consider its additive group or multiplicative group. Letting
ψ be an additive character and χ a multiplicative character, the Gauss sum g(χ, ψ) is defined
to be g(χ, ψ) =

∑
t∈Fq

χ(t) · ψ(t), where χ is extended so that χ(0) = 0. The only important

point for our proof is that

|g(χ, ψ)| =





√
q if χ 6= 1, ψ 6= 0

0 if χ = 1, ψ 6= 0

0 if χ 6= 1, ψ = 0

q if χ = 1, ψ = 0

For a thorough discussion on Gauss and Jacobi sums, see [Ireland and Rosen ch. 8].

Proof of theorem 4.3.1. Let φ∨ : ZN−k → ZN be the corresponding morphism of character
groups, and let M := coker(φ∨) so that ker(φ) = DSpec(Z)(M)3. Then M is a finitely
generated abelian group of rank k, and sits inside the exact sequence

0→Mtor →M → Zk → 0

with Mtor a finite abelian group. Then we have the following exact sequence of fppf group
schemes:

0→ Gk
m → ker(φ)→ DSpec(Z)(Mtor)→ 0

The composition Gk
m ↪→ ker(φ) ↪→ GN

m sits inside the exact sequence

0→ Gk
m → GN

m
π−→ GN−k

m → 0.

3 This ”D” notation is that of Grothendieck in [SGA 3 Exp. VIII]. Again, see the appendix 5.1
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By Hilbert’s theorem 90 (Stacks Tag 03P7), there is an exact sequence

0→ Gk
m(Fq)→ GN

m(Fq)
π−→ GN−k

m (Fq)→ 0

for any finite field Fq. Since our morphism φ factors as

GN
m GN−k

m

GN−k
m

π

φ
φ

we conclude that

|{x ∈ GN
m(Fq)|σ(φ(x)) = 0}| = (q − 1)k|{x ∈ GN−k

m (Fq)|σ(φ(x)) = 0}|.

Thus we are reduced to proving the theorem for the surjective morphism φ : GN−k
m →

GN−k
m , which is the k = 0 case of the theorem. Indeed if |{x ∈ GN−k

m (Fq)|σ(φ(x)) = 0}| =
(q− 1)N−k +O(q(N−k)/2), then multiplying both sides by the factor (q− 1)k gives the result.
Hence we may assume k = 0 in the statement of the theorem.

Thus consider the exact sequence

0→ µM → GN
m

φ−→ GN
m → 0

where µM = DSpec(Z)(M) and M is a finite abelian group. Again by Hilbert’s theorem
90 we have a long exact sequence

0→ µM(Fq)→ GN
m(Fq)

φ−→ GN
m(Fq)→ H1

fppf (Spec(Fq), µM)→ 0

which we rewrite simply as

0→ ker → GN
m(Fq)

φ−→ GN
m(Fq)→ coker → 0.

Writing t ∈ GN
m(Fq) as (t1, . . . , tn) we see that

|{t ∈ GN
m(Fq)|σ(φ(t)) = 0}| = |ker| · |{t ∈ GN

m(Fq)|
∑

ti = 0, t ∈ φ(GN
m(Fq))}|.

We compute what’s on the right hand side of this equation. To see if an element t ∈
GN
m(Fq) is in the image of φ, consider the sum

∑
χ∈coker∨

χ(t), where coker∨ is the group of

multiplicative characters of coker with values in C×. Identifying the characters of coker with
the characters of GN

m(Fq) vanishing on the image of φ, this sum is |coker| if t ∈ im(φ), and
0 otherwise. Since |coker| = |ker|4, we derive that

4This is a simple consequence of the exact sequence above and the first isomorphism theorem
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|ker| · |{t ∈ GN
m(Fq)|

∑
ti = 0, t ∈ φ(GN

m(Fq))}| =
∑

{t|∑ ti=0}

∑

χ∈coker∨
χ(t)

.
For t ∈ GN

m(Fq), we may determine if
∑
ti = 0 by choosing a non-trivial C× valued

additive character ψ on Fq and use the fact that
∑
a∈Fq

ψ(a
∑
ti) is 0 for

∑
ti 6= 0 and q for

∑
ti = 0. Thus we have that

∑

{t|∑ ti=0}

∑

χ∈coker∨
χ(t) =

1

q

∑

a∈Fq

∑

χ∈coker∨

∑

t∈GNm(Fq)

χ(t)ψ(a
∑

ti)

For a = 0 the inner summand is
∑

χ∈coker∨

∑
t∈GNm(Fq)

χ(t). For this the inner sum vanishes

unless χ is the trivial character, so in total the a = 0 term contributes |GN
m(Fq)| = (q− 1)N .

For a 6= 0, the inner sum

∑

χ∈ ˆcoker

∑

t∈GNm(Fq)

χ(t)ψ(a
∑

ti)

can be decomposed into a product of Gauss sums as follows. If χ ∈ coker∨, then χ is
given as the product of χj for j = 1, . . . N where χj is a character of Gm(Fq) such that the
product χ1 . . . χN is trivial on the image of φ. Let S denote the set of all such N -tuples of
characters. Then we may rewrite the sum as

∑

(χi)∈S

∑

(ti)∈GNm(Fq)

χ1(t1)ψ(a · t1) · · ·χN(tN)ψ(a · tN)

In the notation of Gauss sums, for a fixed χ ∈ S the inner sum is just the product
g(χ1, ψa) · · · g(χN , ψa) of N Gauss sums, each of which has complex absolute value

√
q.

Since some such sums are possibly trivial, by summing over all χ we get that this term
contributes at most |coker| · qN/2 in absolute value. Summing over a 6= 0 gives a total of at
most (q − 1) · |coker| · qN/2.

Accounting for the a = 0 term we get

{t ∈ GN
m(Fq)|

∑
ti = 0, t ∈ φ(GN

m(Fq))}| −
(q − 1)N

q
≤ (q − 1)

q
· |coker| · qN/2

Since M is finite, |coker| = |ker| = µM(Fq) is bounded as q →∞ and we get

{t ∈ GN
m(Fq)|

∑
ti = 0, t ∈ φ(GN

m(Fq))}| −
(q − 1)N

q
= O(qN/2)

which proves the theorem.
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Chapter 5

Appendix

5.1 Diagonalizable Group Schemes

A group scheme over X is a scheme G→ X such that representable functor HomX(·, G)
is a functor Sch/X→ Group. There is a well known and equivalent formulation that there
should exist a so called multiplication morphism m : G × G → G, an inversion morphism
ι : G → G and an identity section e : X → G together with a bunch of diagrams relating
them that mimic the axioms for a group. From this point of view it is easy to check that
if G → X is a groups scheme, and Y is any scheme over X, it follows that the pullback
GY = G×X Y → Y is a group scheme over Y .

A large class of examples can be constructed over X = Spec(Z). Taking G =
Spec(Z[x]/Xn − 1) gives us µn, the multiplicative group of n-th roots of 1. In the previous
sections we encountered µ`n = Spec(Z[x]/X`n−1), the group of of `n-th roots of one. Finally,
Spec(Z[X, Y ]/XY − 1) gives the multiplicative group Gm.

The above examples are instances of a more general construction. Let M be an abelian
group, and let Z[M ] be its group algebra. Then for a ring R, to give a morphism Z[M ]→ R
is equivalent to giving a group homomorphism M → R×. Since HomGrp(M,R×) is an
abelian group functorial in R, it follows that HomC−Ring(Z[M ], R) is a an abelian group
functorial in R. However, as HomSch(X,Spec(Z[M ])) = HomC−Ring(Z[M ],OX(X)), it
follows that Spec(Z[M ]) defines a group scheme over Spec(Z). For X any scheme, we denote
the pullback of Spec(Z[M ]) to X by Spec(OX [M ]), and any group scheme over X which
arises in this way is called diagonalizable. We note that Spec(OX [M ]) → X is always
affine and faithfully flat since it arises by base change of such a morphism. It follows that
the sheaf HomX(·, Spec(OX [M ])) is a sheaf of abelian groups on Xfpqc. If in addition M is
finitely generated, then Spec(OX [M ]) is of finite type over X and defines a sheaf on Xfppf .

With this viewpoint we may easily speak about kernels and cokernels and exact sequences
by considering the corresponding morphism of sheaves on Xfpqc or Xfppf . It’s an easy exercise
to see that the kernel of a morphism of group schemes is always representable, hence exists
as a group scheme. That the cokernel of f should be representable is a much more delicate
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matter, and we don’t need results in this level of generality anyway.
We define a contravariant functor DX : Ab→ Sch/X which assigns an abelian group M

to DX(M) = Spec(OX [M ]). We have the following theorem from [SGA 3 Exp VIII 3.3,1.6]:

Theorem 5.1.1. 1. Let X a scheme, and 0 → M ′ u−→ M
v−→ M ′′ → 0 an exact sequence

of abelian groups. Consider the corresponding sequence 0→ DX(M ′′)
v∨−→ DX(M)

u∨−→
DX(M ′) → 0. Then v∨ induces an isomorphism of DX(M ′′) onto the kernel of u∨,
and u∨ is faithfully flat and quasicompact.

2. DX(M ′) is represents the fpqc quotient DX(M)/DX(M ′′).

Corollary 5.1.2. DX gives an anti-equivalence of categories between finitely generated abelian
groups and diagonalizable group schemes of finite type, which is moreover takes exact se-
quences to exact sequences.

If G ' DX(M), M is called the character group of G. The reason being is that
HomX(G,Gm) = HomAb(Z,M) = M by the corollary. Thus we may summarize the above
by saying DX(M) exchanges kernels of morphisms of character groups with cokernels of
diagonalizable groups and kernels of diagonalizable groups with cokernels of character groups.

5.2 Torsors

Let X be connected, and let G → X be a connected commutative group scheme1, i.e. the
representable functor defined by G takes values in commutative groups. A G-torsor in the
étale topology2 is a scheme Y → X together with an action ρ : G×X Y → Y such that there
exits an étale open cover {Ui → X} which splits Y . If we denote the base change to Ui by
using the subscript i, this means that there exist isomorphisms fi : Gi → Yi over Ui such
that the following diagrams of schemes over Ui commute.

Gi ×X Yi Yi

Gi ×X Gi Gi

ρ

id×fi fi

m

In other words, Y is étale locally isomorphic to the trivial G-torsor of G acting on itself
by translation. We note that if a scheme S is isomorphic to the trivial G-torsor, then this
isomorphism is unique up to translation by a unique element of G. Maybe the easiest way
to see this is to show that any automorphism φ of G as a G-torsor is necessarily given by
translation by tg for some unique g. This can be done for example via the Yoneda lemma.

1Here we only consider commutative group schemes because we don’t need to make any connections to
cohomology groups with non-commutative coefficients.

2Of course we could use any other sub-canonical topology, but we don’t need this level of generality.
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It follows that if S is isomorphic to the trivial torsor via f and h, then h−1 ◦ f = tg for some
unique g, so that f = h ◦ tg. We use this fact to note that if we pull the above diagram back
to Ui ×X Uj, then fi|Yij = fj|Yji ◦ tgij . Furthermore, using the uniqueness of the translations
we must have that tgjk ◦ tgij = tgik . Clearly what we are describing is a sort of 1-cycle in the

sense of Čech cohomology, which we now make more precise.

Proposition 5.2.1. There is an isomorphism between isomorphism classes of G-torsors in
the étale topology and elements of Ȟ1(X,G) where G is the étale sheaf on X represented by
G.

Proof. The proof is straightforward. Under the Yoneda lemma, the axioms that Y be a
G-torsor translate to the fact that Y is a sheaf of sets with an action under G and that
they are locally isomorphic if we consider G as a sheaf of groups acting on itself. One then
translates the description given above in terms of morphisms of schemes into that of sheaves
and sections, and everything follows through as above. See [Milne LEC 11] for details.

Now we reduce to the simplest possible case where GX is given as the constant group
scheme corresponding to a finite abelian group G, and again let Y be a G-torsor. By
hypothesis there is an étale open cover over which Y becomes isomorphic to GX acting on
itself by translation. As in the discussion in 2.4, descent theory shows that Y is necessarily
finite étale over X. The condition of the GX-action is now just another way of saying that
Y → X is a finite étale cover which is Galois with Galois group G. Conversely, if Y → X
is a finite étale cover which is Galois with Galois group G, then in the course of proving
proposition 2.4.7 one can show that the isomorphism Y ′ ×X Y '

∐
g∈G

Y ′g is compatible with

the action of GY ′ . Hence we have proved:

Proposition 5.2.2. For a finite abelian group G there is a one to one correspondence between
GX-torsors and finite étale Galois covers Y → X with Galois group G.

Given a finite Galois étale covers Y → X with Galois group G, we get a continuous ho-
momorphism π1(X, x̄)→ G by simply restricting π1(X, x̄) to its action on Y (x̄). Conversely
given a continuous homomorphism φ : π1(X, x̄)→ G, it is possible to construct a finite étale
Galois cover Y → X with Galois group G. For example if φ is the trivial homomorphism,
then take Y = GX . If φ is surjective then 2.3.2 gives the existence of such a Y which is
connected. Thus we have shown (or at least indicated) that

Proposition 5.2.3. For a finite abelian group there is a one to one correspondence between
finite étale covers of X which are Galois with Galois group G and continuous homomorphisms
Homcont(π1(X, x̄), G).

Note that since G is finite abelian, this may be interpreted as a correspondence with
Homcont(π1(X, x̄)ab, G), which is itself an abelian group. The result then is that the cor-
respondence constructed is an isomorphism of abelian groups Homcont(π1(X, x̄)ab, G) '
Ȟ1(X,G).
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Now consider the abelianization of the homotopy sequence for a scheme X0 → Fq:

π1(X)ab → π1(X0)ab → Gal(Fq/Fq)→ 1

Then the geometric Frobenius substitution Frobq ∈ Gal(Fq/Fq) defines an outer auto-
morphism on π1(X)ab, so we can define an action on Homcont(π1(X)ab, G) given by
(Frobq · φ)(γ) := φ(γFrobq). It is then a tedious exercise to check that the isomorphism
Homcont(π1(X, x̄)ab, G) ' Ȟ1(X,G) respects the action of Frobq. Since there is a canonical
isomorphism Ȟ1(X,G) ' H1(X,G), we get a similar result for the first étale cohomology
group. Finally, there is an `-adic analogue of this isomorphism by considering inverse systems
of abelian groups Gn where Gn is a Z/nZ-module satisfying similar compatibility conditions
as in 2.4.9. In this case by talking limits we get that H1(X,G) ' lim←−Homcont(π1(X), Gn) =
Homcont(π1(X), G).

In regard to Lemma 3.1.8, we constructed a homomorphism φ : π1(U0)→ (Q`,+), which
by restriction gives a homomorphism φ : π1(U) → Q`. That Frobq doesn’t move φ comes
from the fact that Frobq is a trivial automorphism of π1(U0)ab, hence acts trivially on those
elements of Homcont(π1(U), G) coming from restriction.
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